# Categoría: General

• ## is Spin(8) triality the missing ingredient for SUSY in Connes’ approach?

Thinking about a major puzzle in the NCG approach to the standard model, I remember that sci.physics.research, via Baez’ weeks, was very fond of triality (in the way of Evans?) to justify why some dimensions allow supersymmetry. And this pivots over SO(8), for which I asked a couple of abusive questions in mathoverflow: Does ??(32)???8×?8…

• ## Bjorken-Zeldovich see-saw

This is another use of square roots in the spirit of the eighties… but a lot more recent, from Bjorken 2013. I have seen some recent variations in Berglund-Hubsch-Minic 2023. Actually I found this while looking for Hubsch’s textbook. They seem also to fanzy the idea of a Higgs with two vacuui, one of them…

• ## The crisis in the sBootstrap

Twitter going all-in in speculative physics, it is a good excuse to mention a friend’s blog that is echoing my -now some ten or fifteen years old- speculative ruminations. Basically it was the idea that string theory was right until, say, 1974… The papers at that time were still considering supersymmetry between mesons and fermions,…

• ## Un trabajo que deje sin hacer

Con la idea de interpretar el espectro del modelo estándar como una ruptura parcial de supersimetría, pregunté el otro dia en physics forums si realmente había o no supersimetría en mecánica cuántica, y naturalmente a los pocos posts me devolvieron la pelota recordandome todo lo que se había hecho en los años 80 y 90…

• ## La complejidad de la formula de Koide

Vamos a asumir que la $$z_0$$ y las $$z_n$$ del ansatz de Koide pueden tener valores complejos. Por evitarnos un parametro, tomemos que es uno. Podemos poner $$z_n= \cos(\tau)\sqrt{2}\cos\left(\frac{2\pi n}{3} + \delta\right) + i\sin(\tau)\sqrt{2}\cos\left(\frac{2\pi n}{3} + \mu\right)$$ de forma que siguen sumando cero y todavia se cumple que la suma de los $$z_n z_n^*$$ es…