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Abstract

Motivated by the almost exact match of composite supersymmetry, we
look for hidden supergenerators in the Wilczek-Zee model.

The experimental situation during the development of GUT and SUSY the-
ories was different from the actual one. At these times the neutrinos were
massless, and the top was expected to be less than 40 GeV. The use of SO(10),
with a massive neutrino, was thought to be a prediction, and SU(5) the safe
bet.

Massive neutrinos change the situation because 32 degrees of freedom for
each generation are easier to fit than 30. Another not usually noticed point is
that a massive top quark with exactly three generations leaves only five flavours
to build bound states of SU(3). This is already interesting in the world of SUSY
QCD, where Nf = Nc + 2 is known to be a transition between two regimes.

But is is even more noticeable as we consider Standard Model charges. The
96 degrees of freedom of the spinors of the Standard Model divide in 24 from
the leptons plus 72 from the quarks. Five flavours of quarks can be combined
with antiquarks to form uncoloured (qq̄) pairs in 25 different ways. If we look
at the charges of u, c and d, s, b, we see that 6 of these pairs have charge +1,
another 6 have charge -1 and 13 are neutral. So they are very near of coinciding
with the 6, 6, 12 degrees of freedom of the respective leptons.

We turn our attention to the quark sector, and we see that Nf = 5, Nc = 3
can combine to give a total of 45 pairs of (qq) , and of course another 45 of (q̄q̄).
So we are a bit over the coloured d.o.f in this case. On closer attention, looking
at the electric charge we see that of the 45 pairs, 18 are of charge −2/3, 18 are
of charge +1/3, and 9 have the more exotic charge +4/3. Had some way to
discard the charges ±4/3, we would have exactly 72 possible combinations for
coloured pairs of particles, and the right number for each charge.

To resume: for electrically charged leptons and quarks, the number of degrees
of freedom matches the number of possible combinations of SU(3)-binded pairs.

Thus we can suspect that the motto ”No supersymmetric partners are ob-
served”, coined in the late seventies, is not true now that we know that there is
only 3 generations, that the top quark is very massive and that neutrinos have
doubled their degrees of freedom.

We can suspect there is an slightly broken N=1 supersymmetry between the
fermions of the standard model and their SU(3)-binded bosons.
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Of course there are some obstructions to address. On a straightforward di-
quark construction, the (uc) scalar is allowed, and we do not want it (neither
the (uu), (cc) diquarks). And probably the required (dd),(ss),(bb) spin 0 bosons
would not be rightly symmetrised. So we need some extra mechanism indepen-
dent of the family number and asking for different symmetrisation conditions
in the up combinations (uu)(cc)(uc) than in the down (dd) (ss) (bb) (ds) (db)
(sb) combinations, so that the former become forbidden and the later become
safely allowed. Considering that in usual phenomenological susy models, as the
MSSM, the up and down sectors get mass from different particles, it does not
seem very unlikely the existence of such mechanism. Another obstruction, ex-
perimental, is the non-observation of the charge −2/3 diquarks (dd) and (ss).
If they can not really be extracted from the measured particle spectrum, we can
always assume their mass is partner of the mass of the (anti)top.

Having supersymmetry to composites helps to explain some features of the
charged leptons of the standard model. The pion mass is near of the muon
mass. And all the three leptons fulfill a mass formula, Koide’s formula[2], that
was designed for composite objects.

What kind of supersymmetry do we have? Given the above match, it is clear
that bosons will be kept as scalars or pseudoscalars; beyond spin 0 they would
produce an excesive number of degrees of freedom. And in the fermion side, we
are pretty sure we only have these spin 1/2 elementary objects. So N = 1 super-
symmetry seems in principle our only option. Still, it is intriguing to notice that
a full generation multiplet would contain 64 degrees of freedom (32 fermionic
and 32 bosonic). We will devote the rest of this letter to discuss the possibility
of arranging the known SM spectrum to imitate N > 1 supermultiplets.

Had we 256 total degrees of freedom, we should look for a N = 8 supergravity
multiplet. Regrettably, with three generations we are in middle ground, 128+64,
and we do not know really if we are interested on massive or massless states.
The former could be useful if we do not rely in a SM Higgs mechanism, the later
are simpler to work out. So, in the following discussion, consider ”N = . . .” as
a helpful label for an alternating sequence of fermionic and bosonic states. To
fix the argument, lets proceed with massless irreps, no central charges.

Lets think first how should we arrange a single generation. It could be a
N = 6 object with fermionic and bosonic degrees of freedom alternating in a
multiplet of size

1 6 15 20 15 6 1

Textbooks like to say ”we are going to study N=1 because it is the more
general case”. Indeed we could build this supermultiplet by joining smaller
supermultiplets of the kind (s, s+1/2). Obviously we need to use 1 pair between
1 and 6, 5 pairs between 6 and 15 and so on. The sequence of fermions would
be

1, 5, 10, 10, 5, 1

At this point, the temptation of using the 5 and 10 representations of SU(5) is
powerful and there are no reasons to resist. So our list could start:
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1 ν
6 (qq̄) (qq̄)(ud̄) (d̄ū){r,g,b}
15 ν e+ d{r,g,b} d∗ u∗ ū∗ e+

20 . ...
15 .

.

Of the fermions of the third line, five will pair with the bosons in the second
line, and ten will pair with the bosons in the fourth. Note that there are some
variations about which 5 and which 10 to put first, but no more than four
different possibilities at all. The one we have chosen implies that besides the
charge-preserving N = 1 transformation of the neutrino to some (qq̄) we should
look for new supersymmetry generators transforming the neutrino to another
extra neutral meson, to a charged (ud̄) q=+1 uncoloured meson and to three
(d̄ū) q=-1/3 colored diquarks. Thus these new susy generators can carry both
electric and colour charge. In fact we see that they carry the needed charges to
produce 5 of SU(5) and, when iterated, to produce the 10. I have not found in
the literature the explicit suggestion of using supergenerators with Q2 = 0 to
produce the representations of SU(5), but it seems a natural process.

The charges of the supergenerators, and here the main point, are the same
than in the composite version of Wilczek-Zee ”binary” model [1], and in fact a
”+” in the bit array of the WZ model is equivalent to the use of the correspond-
ing supergenerator; we have one extra neutral generator from our original susy,
but is a price we can gladly to pay if in this way we can speak of supergenerators
instead of preons.

The WZ model, as the authors themselves explain, is a way to exploit the
SU(2) ”spin” decomposition of SO(2k) in a notation that could be related to
compositeness. We have refocused this ”spin” in order to exploit supersymme-
try. It is amusing that at the same time we seem to need compositeness too,
but we can survive with the Standard Model fermions.

What does it happen with the physical spin? Well, certainly we need
fermions going to bosons and back, but I am not sure about the need of higher
spin. If we produce N=4 from extra dimensional N=1, the charged generators
come from the extra dimensions, not surprisingly if you think in Kaluza-Klein
terms. Should rotations that are only visible in the extra dimensions have some
effect in angular momentum of the four dimensional theory?

Now for three generations. Here we are lost, but let me to sketch where we
stand. Remember that we really need to consider three generations, because it
is the only way to get the right number of bosonic degrees of freedom.

We could just consider three similar N = 6 multiplets. But we can also start
from different points in order to almost mimic a N = 8 object

1 6 15 20 15 6 1
1 6 15 20 15 6 1

1 6 15 20 15 6 1
1 7 22 41 50 41 22 7 1

In some way, it is the substraction of N = 8 minus N = 6. Of course we still
want fermions on one side, bosons in another. What means, that in doing the
sum we must exchange the fermions and bosons of the N=1 susy in order to be
sure we are not adding pears with apples.
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The same argument than in the one generation case invites us to look for
representations from the sum

0 1 5 10 10 5 1 0
1 5 10 10 5 1 0 0
0 0 1 5 10 10 5 1
1 6 16 25 25 16 6 1

but I have never seen a 25 of a simple group.
So no hint from group theory this time. If, on the other hand, we try to add

supergenerators straightforwardly, we are stuck too: one generator allow us to
change only from one family to a second one, and two generators would produce
not three but four families. Not to count that in most cases an odd number of
generators automatically upgrades itself to a bigger multiplet.

We could look for help in the new Kovtun-Zee model [3], evolved from W-Z
to try to fit the three generations. But we could also remain happy that two
generations can be mixed and another one stands apart, because it seems very
much that the third generation must support different properties than the other
two.

While this document represents work still in progress, the author wants to
thank S. Majid and others for providing basic infrastructure and hospitality.
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