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Abstract

With the negative sign for
√
ms, the quarks strange, charm and bot-

tom make a Koide tuple. It continues the c-b-t tuple recently found by
Rodejohann and Zhang and, more peculiar, it is quasi-orthogonal to the
original charged lepton triplet.

1 A history of Koide sum rule

In the late seventies, some authors [?, ?] resuscited, in a quark dressing, the
already old observation [?] about a relationship between Cabibbo angle and
particule masses, say

√
m2
π/2m

2
K or sqrt

√
md/ms. The idea seems to appear

in the sixties, see [?] for older references.
This rehearsal, which we have revived again recently for the PNMS neutrino

matrix, drove an industry of models and textures for the quark mass matrix,
simultaneously to the advent of the third generation. Interesting actors here are
Wilczek and Zee, Fritzsch, and particularly Harari et al. [12], who goes as far
as to propose a model that also implies a direct prediction of the u, d, s masses:

mu = 0,
md

ms
=

2−
√

3

2 +
√

3
(1)

and, note, a Cabibbo angle of 15 degrees.
The model industry, in its version of preon models, was popularized in Japan

by Terazawa, who also proceed to suggest some more complex sum rules between
quotients of square roots, some of them coming from GUTs, some from preons,
and some of them being purely empirical. And both GUT based and preon
based models allowed eventually to extend the equations to the lepton sector,
which was more promising, given the high precision of the mass of electron and
muon.

So, in the early eighties Koide suggested some models [6, 7, 8] able to predict
a Cabibbo angle exclusively from the lepton sector, and then he found that some
of the equations also predicted a relationship between the three charged leptons:

(
√
me +

√
mµ +

√
mτ )2

me +mµ +mτ
=

3

2
(2)
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Really Koide’s equation predicted the mass of the tau lepton before the
correct measurement of its modern value, and still today it is exact inside one-
sigma levels. But at the time of the proposal, the experimental measurement of
tau was not so good and it was mistaken in some percentage. Thus the “sum
rule” was kept sleep until a re-evaluation of the tau mass vindicated it. At
that time, in the mid nineties, the field has evolved and the original goals were
not high in the check lists, so the formula got a new start: not a final product
anymore, but a point of departure guiding model builders.

Foot [11] suggested to read the relationship more geometrically, as if asking
the triple of square roots to keep an angle of 45 degrees with the triple (1, 1, 1).
And Esposito and Santorelli [3] did an analysis of the renormalization running,
and a first approach to the question of fitting neutrinos, if massive, into a similar
formula.

Later in 2005, an informal online working group1 took the task of evaluating
low energy mass formulae and its current validity, and of course Koide formula
emerged again here. An incomplete review of the formula was done in [14],
addressing the case of zero mass, where the relationships (1) are recovered.
The neutrino case was reevaluated with most modern data [1, 2]. Eventually
the reference to Koide sum rule for neutrinos did its way into the standard
literature on PMNS parameters.

A byproduct of the online effort was to rewrite again the equation following
Foot’s idea, allowing a phase angle to parametrize the rotation around (1, 1, 1).

mk = M(1 +
√

2 cos(2kπ/3 + δ0))2 (3)

It is usual to absorb the permutation ambiguity of Foot’s cone in this phase δ0,
by the combination of change of sign, plus rotations of 120 degrees.

It is intriguing that for charged leptons M ≈ 313 MeV, typical of constituent
quarks or of QCD strings. But more important is that this parametrization
clarifies the use of negative signs in the square roots of the masses. This was a
key to build the neutrino tuples, and it is relevant for the new tuple that we are
presenting in this paper.

Inspecting (3), you can see that there are two ways to produce a degenerated
pair: with δ = 0 or with δ = ±π/12, and you can use them to produce one
or other hierarchy of neutrinos. Being the phase of the charged leptons δl,
C Brannen proposed [1] a phase π/12 + δl to match known bounds, and M.
D. Sheppeard proposed [16] −π/12 + δl as a match to the results of MINOS
experiment.

The PhD thesis of François Goffinet [4], in 2008, revisits most of the old
concepts, and then including neutrinos and the possibility of negative roots, as
well as the idea of generalizing the formula to all the six quarks in a single sum.
This last possibility has been also reviewed by [5].

2 Current advances

Very recently Rodejohann and Zhang [15] recognized the possibility of fitting
Koide formula to quark triplets not of the same charge, but of nearby mass:

1Around www.physicsforums.com and some blogs, after some headstart in the s.p.r usenet
newsgroup. Besides the authors of the referenced papers, other strong online contributors as
Hans de Vries or Dave Look provided alternate insights and even programmatic analysis tools
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they suggested fits for the low mass quarks uds with modern values of the mass
quotients, and more importantly for this note, they suggested a very good fit for
the heavy quarks cbt. This can be readily verified from current data from [13].
With mt = 172.9 ± 0.6 ± 0.9, mb = 4.19+0.18

−0.06, and 1.29+0.05
−0.11 GeV, the central

values give to the LHS of (2) a value of about 1.495, very close to the required
3/2. Further analysis of it, including renormalization group, can be seen in [5].

It is interesting to try to produce all the masses from the two upper ones.
We can solve (2) as

m3(m1,m2) =

(
(
√
m1 +

√
m2)

(
2−

√
3 + 6

√
m1m2

(
√
m1 +

√
m2)2

))2

(4)

and use it to iterate. We get the descent:

mt = 172.9 GeV
mb = 4.19 GeV
mc(172.9, 4.19) = 1.356 GeV
ms(4.19, 1.356) = 92 MeV
mu(1.356, 0.092) = 0.036 MeV
md(0.092, 0.000036) = 5.3 MeV

The main point in this descent is that we have produced a tuple not yet in
the literature, the one of strange, charm, and bottom. How is it?

Closer examination shows that the reason of the miss is that in order to
meet (2), the value of

√
s must be taken negative. But this is a valid situation,

according Foot interpretation and the parametrisation (3).
Of course, once we are considering negative roots, the equation (4) is not the

only possible matching. But the possibilities are nevertheless reduced by the
need of a positive discriminant in the equation and by avoiding to come back to
higher values, above the mass of the bottom quark. Another problem is that,
once we have recognised the sign of

√
s, the validity of the two next steps in the

descent, up and down, is unclear. We will come back to these two quarks in the
next section.

A most important observation is that (−
√
ms,
√
mc,
√
mb) is on the opposite

extreme of Foot’s cone respect to (
√
mτ ,
√
mµ,
√
me), making an angle of almost

ninety degrees.
Furthermore, the parameters of mass and phase of this quark triple2 seem

to be three times the ones of the charged leptons: we have Mq = 939.65 MeV
and δq = 0.666, while in the leptons Ml = 313.8 MeV and δl = 0.222, about
12.7 degrees.

We can take seriously both facts and use them to proceed in the reverse
way: take as only inputs the mass of electron and muon, then recover Ml and
δl, multiply times three to get the parameters of the opposite tuple and then
the masses of strange, charm and bottom, and then use the ladder up and down
to recover the previous table. It is impressive:

2For other quark triples we have not found any obvious hint; for the charm,bottom,top,
we get M = 29.74 GeV, δ = 0.0659
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Inputs Outputs
me = 0.510998910± 0.000000013 mτ = 1776.96894(7) MeV
mµ = 105.6583668± 0.0000038 ms = 92.274758(3) MeV
Mq = 3Ml mc = 1359.56428(5) MeV
δq = 3δl mb = 4197.57589(15) MeV

mt = 173.263947(6) GeV
mu = 0.0356 MeV
md = 5.32 MeV

Still, the results are a bit higher respect to the descent from the top quark.
Actually, we don’t have an argument to keep the factor three between leptons
and quarks, except that the physical situation seems to be a small perturbation
respect to a case where it is a bit more justified, the full orthogonal case with
δl = 15◦, δq = 45◦. Lets look at it now.

3 The me = 0, or mu=0, limit

Our purpose is to think of the empirical triples as a rotation from a more
symmetrical situation, keeping the sum of the masses (which is the modulus
square of Foot’s vector) constant. Our candidate unperturbed state is the one
who has the mass of the electron equal to zero.

It is precisely when δ = 15◦ in the parametrisation (3), that one of the
masses becomes zero and the mass tuple is

m15 =

(
3(1 +

√
3

2
)M, 0, 3(1−

√
3

2
)M

)
(5)

You can notice that this is equal to the result (1) above.
The state in the opposite generatrix of the cone is given by a phase of −165

degrees, which is, modulus the 120◦ and sign ambiguities, 45 degrees, ie three
times the other phase. Our argument is thus that for a small perturbation this
factor can be kept at least at first order, if not better.

Now, lets contemplate the components of this orthogonal state:

m45 =

(
(1−

√
3

2
)M ′, 4M ′, (1 +

√
3

2
)M ′

)
(6)

There are obviously orthogonal (remember that we take −sqrt(s)) for any
values of M and N’, but for M ′ = 3M there is an extra symmetry, or an extra
degeneration of levels if you wish. So again we incorporate this relationship,
and its approximate validity under perturbation, as a postulate. If you look at
the empirical data above, you will see that Mq/Ml ≈ 2.99.

So we identify m45 as the quark triplet of strange, bottom and charm. Now
we can proceed in the same way that before, to produce from bottom and
charm the mass mt, and from strange and charm the mass mu, and next md.
Just to put numbers in, and see how far we are from the perturbed state, lets
fix the only parameter M to 313.86 MeV. Then we get ms = mµ = 126.1 MeV,
mc = mτ = 1757 MeV, mb = 3766 MeV and mt = 180 GeV.

For mu we need to use ±
√
ms, and then we have two possibilities in (4).

But the alternative with the minus sign produces a zero discriminant, and then
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the same mass than mb. We can either to claim a halt here, and disregard the
possibility to estimate u and d, or to choose the plus sign.

In this case, the triple u, s, c has the same solution that the lepton triple,
and then mu = 0.

And the final ladder in the descent, d, u, s with mu = 0, again does not
allow for negative roots, just look at (3) to verify it. So we meet again the same

proportion, and now really it is the relationship (1), with md = ms
2−
√
3

2+
√
3

= 9.05

MeV.
The reproduction of equation (1) in this formalism justifies the descent with

positive sign; but it is not fundamental for the rest of the work.
A last remark: Which is the mass of the pion in this limit? With md still

not null and greater than the sum of perturbed mu + md, it seems even a bit
higher than usual. But it would be interesting to find an unperturbed model
where mπ = mµ. Then, given that me = 0, the charged pion would be stable.

4 Conclusions

We have shown that by taking Koide equation, parametrised in Foot’s cone, and
then allowing determinate negative square roots, a new triplet of quarks can be
legitimately added to the collection of fermion sum rules.

Furthermore, we have seen that this triplet, strange-charm-bottom, is almost
orthogonal to the original triplet of charged leptons; we have argued that it is
valid to accept the proportionality constants from this orthogonality and to
translate the parameters from one triplet to another. This allows to calculate
the masses of the quark triplet and then, applying Koide formula, also the mass
of other quarks, and particularly [15] the mass of the top quark.

We have not done the effort of exploring the variation of the matchings
along renormalisation group runnings, as the general insights from other works
on Koide equation will apply here too. But we raise the suspicion that the
matchings are to be interpreted in the infrared or at last at low energy, because
of the conspicuous role of mass scales usually associated to QCD and chiral
symmetry breaking: note the above empirical values for the basic mass of lepton
and quark triplets, 313.8 and 939.7 MeV.
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