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Abstract We propose an interpretation for the adjoint rep-
resentation of the SO(32) group to classify the scalars of
a generic Supersymmetric Standard Model having just three
generations of particles, via a flavour group SU (5). We show
that this same interpretation arises from a simple postulate of
self-consistence of composites for these scalars. The model
looks only for colour and electric charge, and it pays the cost
of an additional chiral +4/3 quark per generation.

1 Introduction

While highly relevant in string theory and supergravity, the
SO(32) group is not a good unification group as it doesn’t
have complex representations [19]. But it still gets an inter-
esting family group when decomposed. In this letter, we first
review the decomposition, interpret it as a group symme-
try on scalars that could be supersymmetry partners of the
Standard Model fermions, and then we present an interest-
ing reconstruction of such scalars as composites. Besides,
the interpretation has a uniqueness that limits the number of
generations for the SM group.

This reconstruction could have some application when
considering open string theory and their branes, or could be
used as basis for other GUT-flavour models. Considering this,
we include a pair of sections with some separate discussion
on other related groups.

2 The flavour group in SO(32)

The authors of [18] classify decomposition of groups hav-
ing explicitly a SU (3) colour subgroup, giving candidate
representations as well as the decomposition of the adjoint
representation in all the cases. Groups SO(2n) are case 4
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of this classification, where they obtain the decomposition
SO(n1) ⊗ SU (n2) ⊗ SU (3) ⊗ U1(1) with 2n = n1 + 6n2.
Our case of interest is SO(32) with the maximal SU (n2),
this is n2 = 5. The representations intended for fermions
are not very useful, as the group is of kind SO(4k), without
complex representations. But we are interested on the adjoint
as a place for scalars. The stated result gives us

496 =
(1, 24, 1c) +[1, 15,3̄c] +[1,1̄5, 3c] +
1, 24, 8c +[1, 10, 6̄c] +[1, 1̄0, 6c] +
(1, 1, 8c) +

(2, 5, 3c) +(2, 5̄, 3̄c) +
(1, 1, 1c) +[1, 1, 1c]

(1)

And our components of interest are the three first ones, that
we have stressed with boldface. The explicit U1(1) group
provides an hypercharge that counts the number of coloured
representations and is zero for colour singlets, so we can
assign respectively Y1 = 0,+1,−1 to the above 1c, 3̄c and
3̄.

To get a second hypercharge, we can consider SU (5) as
the flavour group and decompose it [15,28,29] down to mul-
tiplets in SU (3) × SU (2) ×U2(1)

15 = (1, 3)−6 + (3, 2)−1 + (6, 1)4 (2)

24 = (1, 1)0 + (1, 3)0 + (3, 2)5 + (3̄, 2)−5 + (8, 1)0 (3)

Now from the two hypercharges we can produce a charge

Q = 1

5

(
2

3
Y1 − Y2

)
(4)

and check that the resulting decomposition includes content
corresponding to the scalars of a minimal, three generations,
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supersymmetric standard model.

( f3, f2) Y1 Y2 Q
(1, 15, 3̄) (3, 2) 1 −1 +1/3

(6, 1) 1 4 −2/3
(1, 1̄5, 3) (3, 2) −1 +1 −1/3

(6, 1) −1 −4 +2/3
(1, 24, 1) (1, 1) 0 0 0

(1, 3) 0 0 0
(8, 1) 0 0 0
(3, 2) 0 5 −1
(3̄, 2) 0 −5 +1

(5)

Plus an extra content

Y1 Y2 Q
(1, 15, 3̄) (1, 3) 1 −6 +4/3

(6)

We can arrive to the same result by chaining some branch-
ings. A straightforward way is SO(32) ⊃ SU (16) ×U (1),

496 = 10 + 1204 + ¯120−4 + 2550 (7)

and then SU (16) ⊃ SU (15) × U (1) and SU (15) ⊃
SU (5) × SU (3), to finish applying (2), (3). In this way the
quarks come from the initial 120s, while the leptons are from
the 255. Or respectively in SU (15), from the 105s and the
224.

3 SO(32) from postulates

Once we know that our aim is to get not the fermions but
just the scalar partners of a Susy Standard Model, we can
wonder if there is some set of postulates that isolates directly
the flavour group, or at least the number of generations it has.
It turns out, there is an amusing set of requirements that force
this result.

The clue is the “recursive” property of colour: we can get
the 3 colour triplet out of 3̄ × 3̄ = 3 + 6. And also we can
get singlets, from 3 × 3̄ = 1 + 8.

And adding to this hint, we notice that one quark with an
antiquark allows to build particles of electrical charges +1,
0, and −1, but not only that: also we can build a charge +2/3
with two antiquarks of down type, and a charge −1/3 with
one antiquark down plus other antiquark down. This was in
fact the spirit of the above decomposition of SU (5) flavour,
but it is even more interesting when starting from particles
and going later to groups.

3.1 Turtles and elephants

We consider scalars as composites either of pairs of quarks,
as a colour triplet, or of pairs quark anti-quark, as a singlet.
Furthermore, we divide the quarks in two classes: turtles and

Fig. 1 Illustration of the concept Turtles all way down, with an spec-
tator but massive giant (Credit of the drawing: De Rújula)

elephants,1 and add a rule: only turtles can combine into
composites.

We assume there are N up-type quarks, of these ku turtles,
and N down-type quarks, of which kd turtles.

We ask for what values of N , ku, kd the number of scalars
of each type is exactly 2N , as required in supersymmetry
models. This gives two equations for squarks up and down:

2N = kukd (8)

2N = kd(kd + 1)/2 (9)

So N ≥ 3 (actually, N must be half of an hexagonal number)
and kd = 2ku−1. If we add other two conditions, for sleptons
charged and neutral

2N = kukd (10)

4N = k2
u + k2

d − 1 (11)

then the solution is unique, N = 3, ku = 2, kd = 3. There
are five turtles and one elephant, that we can name as the top
quark.

However, note that if we consider all the combinations of
turtles we find that we get three extra “squarks” of charge
+4/3, and their opposites.

1 Or giants see Fig. 1.
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3.2 Colourless and coloured flavour groups

The extra “squarks” look as a penalisation but group theo-
retically they are the ones that allow to complete the flavour
supermultiplet into a 15 of SU (5)

At this level and without colour, we could consider that
the flavour is organized in the 54 of SO(10), and then break
it down to SU (5) ×U (1)

54 = 154 + 1̄5−4 + 240

where again the hypercharge from this U(1) can be combined
with the one on (2), (3) to reproduce the electric charge.

If we want to incorporate colour and unify colour-flavour,
our minimal candidate is SU (15). From here we can go up to
SO(30) and then to SO(32) adding singlets, or substituting
colour SU (3) by U (3).

4 A case for one generation

The above argument assumed the SM and particularly that
the turtles were allowed to bind only if they had colour. But
the final particle content is very reminiscent of the Georgi-
Glashow model.

Consider the usual formulation of the model

5 = (1, 2)−3 + (3, 1)2 (12)

10 = (1, 1)−6 + (3̄, 1)4 + (3, 2)−1 (13)

and use Q = T3 − Y/6 to study the electric charge of the
colour singlets and colour triplets in each representation of
SU (5)

Repr Singlets Triplets Antitriplets Other

1 0
5 0, +1 −1/3
24 0,+1, 0,−1 −4/3, −1/3 +4/3,+1/3 (8)q=0
10 +1 +2/3,−1/3 −2/3
1̄0 −1 +2/3 −2/3,+1/3
15 +2, +1, 0 +2/3, −1/3 (6)−2/3

1̄5 −2, −1, 0 −2/3, +1/3 (6̄)+2/3

It can be argued that the union of 10 + 1̄0 + 24 is the
one generation version of our previous construction, albeit
with only a left neutrino. See how the X boson of the GUT
model is here just the q = +4/3 scalar, and how we have the
condition of two states for each fermion. In this case our
turtles, binding, are all the members of 5 and the elephants,
not-binding, are the members of 10. They bypass the previous
uniqueness proof because we are allowing leptons to join the
game.

It could be interesting to consider variants of this game,
such as flipped SU (5) [12] with some rules for the U (1)X

charges of the 24 and 15, or even an anomalous “deflipped
SU (5)” with the up quark in the fundamental but the stan-
dard hypercharge assignments, so that the +4/3 triplet would
appear in the decuplet. The authors in [9] use a different
charge assignment to produce the +2/3 charge in the 24, so
that it is composed of gluons, a photon, and a whole set of
SU (3) × U (1) charges, and then a broken susy SU (5) pro-
duces the standard model particles as Goldstone fermions.

The SU (5) model was frequently used as foundational
model in the peak of composite theories in the early eighties.
In most cases the components in the 5 were new particles, but
some models considered to keep right fermion as elementary
and only left as composite, and even there was some pro-
posal [14] were the 5 had a shared mix of preons and known
fermions. The author in [4] considers a fundamental “quint”
and a composite 10, albeit from the product of three “quints”.
Early literature also includes ideas where only the leptons are
composite, as well as proposals where only the first family
is elementary.

5 The role of the top

The argument in Sect. 3 tells us that there is one quark that
does not act as a preon for the susy scalars. It does not tell us
which one. We need to identify the elephant. And really we
have not a concrete argument.

We favour the top quark due to the horizontal, flavour-like,
symmetries found in the first section: SU (3) f3 × SU (2) f2 .
When considering the values of quark Yukawa couplings, and
thus quark masses, it seems more fitting that the f2 symmetry
relates u and c, with the t quark being the excluded one. This
scenario is typical when breaking textures.

We were in fact inspired by the empirical observation that
toponium doesn’t exist, but this is perfectly justified by the
mass of the top being closer to the Fermi scale than to the
QCD scale. So it disintegrates faster than it binds. However,
we have not discussed the binding mechanism here, and the
one from QCD doesn’t apply.

The heavy mass of the top quark can be used as an argu-
ment in compositions where the quarks act as charges at the
ends of a relativistic open string, as they need to be mass-
less, or at least as light as possible. And ultimately it can
be expected that masses in the standard model -with right
neutrinos but not other particles- are protected by two dual
symmetries: one that fixes all the degrees of freedom as Dirac
massless except the top quark, and another one that fixes all
the degrees of freedom as Majorana massless except the neu-
trinos.2

2 Such protection splits degrees of freedom as 84+12 in both cases, and
thus we should look for some group representations in the 84, 42 or 21.
Note M2-brane and M5-brane carry a SU (9) symmetry.
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6 Discussion on masses

The main point of this section is the existence of a mass for-
mula that produces pairs of equal mass particles, as required
by unbroken susy.

Excepting the top quark, preon models from the eighties
were known to produce realistic masses. One model from that
age is [24], that became popular later due to the accuracy in
the lepton sector. It assumes that all the mass comes from a
single abelian charge and that all the preons are presented in
the same state, so the energy of a pair, having the same spatial
wavefunction, is simply the energy of a single element with
the sum of the charges

E(qa, qb) = E(qa + qb) = (qa + qb)
2K� (14)

Intuitively one could imagine classical charge on two spher-
ical surfaces of radius � and common center, and sum both
self-energies plus the interaction energy and see how it does
not depend of the radius �.

Furthermore, the model [24] makes two provisions for
composites of three pairs (a, bi ) to produce realistic masses:

• That the charge of the three bi particles add to zero

z1 + z2 + z3 = 0 (15)

• That the self energy of the common preon a averages the
self energy of the other three

z2
0 = z2

1 + z2
2 + z2

3

3
(16)

The first condition is easily met extracting an abelian
charge from any direction of a SU (3) triplet, and we have
some. The second is a sort of trace condition but it is imposed
ad-hoc. Remember also that z2

i = (z j +zk)2. So at least some
scalars keep having the same self-energy than a third preon
in the set.

Lets parametrize with an angle α all the possible ways
to produce an abelian charge from the 3 representation of
SU(3), in T3, T8 basis

z1 = 1

2
cos α + 1

2
√

3
sin α (17)

z2 = 0 − 1√
3

sin α (18)

z3 = −1

2
cos α + 1

2
√

3
sin α (19)

z0 = ±1/
√

6 (20)

This is T3 for α = 0 and T8 for α = π/2.
The solutions have an obvious periodicity 2π/3 and sym-

metries at π/6 and π/2.

As it is well known, if we use a scale factor k = me +
mμ+mτ then for α = 0.745821 the mass triplet [k(z0+zi )2]
recovers exactly the values me,mμ,mτ . This is sometimes
interpreted as a prediction for mτ [24], as we can use me and
mμ to recover α, k and then calculate the extant mass, well
within one sigma of the current measurement error. Note also
that kz2

0 = 313.85 MeV, a familiar quantity from QCD [27].
More interestingly, we can ask for the mass values of the

octet and sextet. Note that they do not depend on z0; our
choosing of sign is translated to the whole [z1, z2, z3] tuple,
but this is in turn just a exchange of preons with antipreons.

6.1 Paired scalars in the same representation

Our goal is to check if we can realistically recover a mass
spectrum similar to supersymmetry scalars. This means that
we should find pairs of scalars in the same representation
having equal masses. We have to cases.

For α = π/2 or π/6 we recover two equal masses and a
different one in the triplet of (3, 2)

1

4
±

√
2

6
,

1

2
∓

√
2

3
,

1

4
±

√
2

6

The octet is never a problem as we have the “antiparticles”
in the same set. The sextet fails for one pair. The triplets
of (3, 2) are also a source of trouble, as the pair should be
expected to happen across the SU (2); the only possibility is
to assign the same charge to “preons” c and u.

A better result happens for α = 0. Here a change of sign
just exchanges charges z1 and z3, so we get exact pairs of
masses in all cases. More important, also the sextet is grouped
into pairs.

So we can conclude that it is possible, with this mass
formula, to obtain an spectrum that resembles the scalars of
a mildly broken supersymmetry.

If we take seriously that the mass of the fermions is just
the “preonic” self energy, then the discrepancy in the α = 0
case contains a sort of isospin exchange: we have assigned

u = c = 313.85,

s = 0, d = b = 470.8

and we have got

(u, c, t) = (0, 470.8, 1883),

(d, s, b) = (15.8, 313.85, 1553.4)

6.2 Solutions with paired scalars in different
representation. Missing symmetry

Lets go a bit beyond this the scope of this work, to look
also for rotations that create some pairs in different repre-
sentations. The motivation here is to explore for some extra
symmetry that includes quarks of different charges. This is
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Table 1 “slepton” masses for kz2
0 = 313.85 MeV. There are always

two massless sneutrinos in the octet (8, 1) and other two in (1, 3). The
other two combinations of (1, 3) and (1, 1) can be chosen to have zero
mass too

0 π/2 π/4 αSM α.68583

ūd 1553.4 914.63 1756.96 1776.9 1801.22
(3,2) ūs 313.85 53.848 0 0.5110 3.4179

ūb 15.853 914.63 126.144 105.65 78.463
(3̄, 2) (as above)

s̄d, d̄s 470.775 1412.32 1756.96 1717.2 1647.7
(8,1) d̄b, b̄d 470.775 1412.32 126.144 91.47 49.128

b̄s, s̄b 1883.1 0 941.55 1016.0 1127.8
(s̄s, d̄d, b̄b) 0

ūu, c̄c 0
(ūc, c̄u) 0 if u = c, 1255.4 if u �= c

phenomenologically motivated by two approximate observa-
tions:

• that the top mass still can fit in a Koide SU(3) tuple but
only respect to high masses, for instance (mc,mb,mt ).

• that (ms,mc,mb) also look as a valid tuple.

Both observations need to get values from different repre-
sentations. Looking for such solutions is beyond the scope
of this work, but we can cover here the cases where a mass
appears in two representations, as it is really a completion of
our inspection.

We find two cases. First, for α = π/4 = 0.7854... we
obtain for the triplet of the sleptonic (3, 2):

1

4
(2 + √

3), 0,
1

4
(2 − √

3) (21)

and with change of sign:

1

12
(2 − √

3),
2

3
,

1

12
(2 + √

3) (22)

The second case happens when z0 = ±2zi for some
index i . All the solutions are similar obtained as reflec-
tions and translations of sin−1 1

2
√

2
; we show in the tables

α = 0.6858... for continuity.
The proportion (21) was first found by [21] who assigned

them to (ms,mu,md), back in 1978.
It is interesting that if we scale (21, 22) to get equal masses

in both tuples, we observe a relation
∑

mq = 3
∑

ml ,
and that works empirically for (ms,mc,mb) with respect
to (me,mμ,mτ ). Also a comparison of Table 2 respect to
the quantities of Table 1 seems to hint a missed factor of
three in other cases: 627.7 → 1883.1, 156.93 → 470.7,
313.85 → 841.55. With the factor three the tuple we have
called (ud, us, ub) gets more realistic masses and we know

Table 2 “squark” masses for kz2
0 = 313.85 MeV. Note that a global

change of sign in s, b, c exchanges the (3, 2) of sleptons and squarks

0 π/2 π/4 αSM α.68583

ud 15.853 26.93 42.048 45.18 49.128
(3,2) us 313.85 1829.25 1255.4 1205.3 1127.8

ub 1553.4 26.93 585.65 632.66 706.162
dd 1883.1 627.7 2342.61 2388.9 2445.29
ds 470.775 156.93 42.048 55.31 78.463

(6,1) ss 0 2510.8 1255.4 1156.1 1007.05
bd 0 627.7 313.85 289.03 251.76
bs 470.775 156.93 585.65 597.21 611.32
bb 1883.1 627.7 168.192 221.23 313.85

from elsewhere that it can be further rotated to produce more
exact values, but we will not pursue this here3

Our conclusion in this section is that the breaking down to
a single SU (3) flavour, and particularly the neglect of weak
isospin, misses some extra symmetry that would allow more
comprehensive mass formulae.

7 Discussion on related groups

7.1 On SU (15)

For the group decomposition, similar results could be
obtained with only SO(30) or SU (15) as a coloured flavour
group, or SO(10) or SU (5) as colourless flavour groups, or
even with Usp(32).

SU (15) was considered as a GUT group by [1] and [16].
The first reference notes that it is a subgroup of SO(32) Both
references embed a full generation

(lL , lcL , νL , urgb,L , ucrgb,L , drgb,L , dcrgb,L)

inside the fundamental of SU (15). On the other hand, our
approach embeds the (2, 1) + (1, 3) turtles of our SU (5)

flavour:

(urgb, crgb, drgb, srgb, brgb)

and we use, as noted above, the 105, ¯105 and 224 represen-
tations.

Recently [10,11] have considered SU (15) in the context
of the standard model extended with bifermions, so they

3 It is just an empirical observation, that solving

m3 =
((√

m1 + √
m2

) (
2 −

√
3 + 6

√
m1m2(√

m1 + √
m2

)2

))2

with input (172.4, 4.183) gets 1.3495, and then input (4.183,1.3495)
gets 0.092.
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naturally use these representations. They consider the par-
ticles to be elementary, so “biquarks” instead of “diquarks”
or mesons, but this distinction blurs away when we consider
an interpretation as open string terminated in quark labels.
More importantly, they still keep having leptons in the funda-
mental representation, so it is possible to get a lepton number
in the 15 × 15 and 15 × 1̄5 products.

The difference with our model is due to option for the
breaking path SU (15) ⊃ SU (12) × SU (3)l × U (1) ⊃
SU (6)L × SU (6)R × SU (3)l × U (1) × U (1), that allows
to put a whole generation of the SM without right neutrinos
in the decomposition of the 15, at the cost of some delicate
surgery [1,16]. The first extracted SU (3)l group has the goal
of joining all the leptons of each generation in a single mul-
tiplet; if we want an extra νcL neutrino it must be expanded
to SU (4)l and then the whole group to SU (16)

7.2 On SU (8)

This section and the next one are explorative work, the main
theme being if representations of other groups from super-
gravity and string theory can benefit of a similar interpreta-
tion as scalars of some supersymmetric standard model.

SU (8) appears directly because an alternate chain down
from SO(32) is to take the detour SU (16) ⊃ SO(16) ⊃
SU (8) ×U (1)

496 = 1 + 1204 + 1204 + 1200 + 1350

= 1 + 3(10 + 282 + 2̄8−2 + 630)

+362 + 3̄6−2 + 630 (23)

And then we can go for the group theory of SU (8) ⊃
SU (5) ⊗ SU (3) ⊗U (1) but with a lot more of hypercharge
assignments (usually uglier, but worth a glance).

Family GUT unification with SU (8) was examined with
some detail in 1980, see for instance the references in the
recent revisit of [3]. Typically three families of standard
model fermions were expected to be in the summed com-
plex representation 8̄ + 2̄8 + 56 and some criteria was
used to select the hypercharge assignments.Most models pre-
ferred to interpret for flavour the first SU (3) in SU (8) ⊃
SU (5)⊗SU (3)⊗U (1) instead of leaving it for colour as [18].
Both approaches differ only in the algebra of U (1) charges
for the multiplets. The fundamental decomposes as a colour
triplet, a SU (2) horizontal doublet, and a SU (3) horizontal
triplet.

8 = (1, 1, 3)0,−5 + (1, 2, 1)−3,3 + (3, 1, 1)2,3

Note it went first to

8 = (1, 3)−5 + (5, 1)3

and while in the first approach SU (5) is flavour-colour, in
the second it is just two horizontal symmetries and the colour

triplet is explicit. So we prefer this later way because so all
the irreducible representations of SU (8) have an interest-
ing interpretable descent. The decomposition of the 28 has a
quark content, triplets, that looks very much as our division
in five turtles and one elephant,

28 = (1, 3̄)−10 + (5, 3)−2 + (10, 1)6

but it is different to the SO(32) case. To illustrate a particular
assignment, if we think of the fundamental as “half-charged
preons” of charges ±1/2, 1/6, then in the 28:

– (1, 3̄) is one anticoloured particle of charge +1/3
– (5, 3) are coloured particles, three of charge −1/3, two

of charge +2/3
– (10, 1) contains six particles of charge 0, three of charge

−1 in an horizontal “antitriplet”…and one of charge +1

So this content doesn’t allow for our “recursive” interpre-
tation of the interplay between the 32 and the 496 of SO(32)

We can play also with content from extra representations.
The 36 somehow complements the 28, and the 63 can pro-
vide a full uncoloured (24, 1) to break into different charges.
Besides, in this path, the fundamental of SO(32) appears in
SU (8) as

32 = (81,2 + 8̄−1,2) + (81,−2 + 8̄−1,−2) (24)

and so it provides extraU (1) charges and extra particles; one
needs a good motivation to justify a particular pick. We can
explore one hundred weightings to extract the electric charge
Q of each representation, most of the combinations offering
extra quark and lepton content, including some +4/3 quarks.

We could also use the process via via SU (5) ⊃ SU (2) ⊗
SU (3) to assign weak and colour multiplets as usual. On our
point of view, both SU (2) and SU (3) here are horizontal
groups.

One can observe that (24) meets the condition asked in [18]
of having only singlets and triplets of colour, and so wonder
what reasons, besides simplicity, motivate the exclusion from
the listing.

We could also consider first a regular descent, via SO(16)

to SU (8) × SU (8)

120 = (8, 8)0 + (28, 1)2 + (1, 28)−2

255 = (1, 1)0 + (8, 8̄)2 + (8̄, 8)−2 + (63, 1)0 + (1, 63)0

7.3 On E8 × E8

Exotic approaches to flavour are not unknown in supergrav-
ity, a good example being the diagonal SU (3) from Gell-
Mann, that also ignores electroweak charge [26]. And as
SO(32) is relevant to 10D sugra, and all the 10D supersym-
metric theories are related via string dualities, it is interesting
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to speculate if other corner of this space, the E8 ⊗ E8 group,
can present a similar mix.

We can examine this possibility starting from the conclu-
sions of the above sections, albeit at the moment the discus-
sion will be very light, and inconclusive, if not disappointing.

E8 is not considered in [18] because the authors apply
a “colour restriction” in their selection of groups, asking
for decomposition of the fundamental representation having
only singlets and triplets of SU (3). It is more particularly
reviewed by [2], who enumerates the problems to use it as a
group GUT and also considers decomposition with explicit
family group SU (3)F . A separate approach with explicit
colour group SU (3)c and then mixed electroweak-flavour
SU (6) × U (1) was done in [7] via an initial breaking into
SU (9). Generically, E8 has an industry of its own for pure
algebraic approaches, linked to Clifford algebras, and full of
interesting observations, but reviewing it is out of the scope
of this letter.

Both SO(32) and E8 ⊗ E8 have a subgroup SO(16) ⊗
SO(16). The branching of SO(32) to this subgroup is

496 = (120, 1) ⊕ (1, 120) ⊕ (16, 16)

very similar to the branching we have used in (7)
Isolately, each E8 branches to SO(16) as

248 = (120) ⊕ (128′)

What we suspect is that quark and lepton parts have dif-
ferent roles, the quark part coming from 120; one of the 120s
will provide the quark-like charges, the other will provide
the antiquark ones. The lepton part can be extracted from the
28 of SU (8) but it could also come from the 63, and then we
should investigate the (128′) irrep.

Remember that in the initial sections the critical part has
been to obtain a 15 representation of SU (5) associated to
a triplet 3 of SU (3), as well as a 24 associated to the sin-
glet. And here is the problem: any further factorisation of
SO(16) fails to get representations as big as the 15. We are
down to fives and tens too soon. Amusingly, we could also
consider a directly branching E8 ⊃ SU (5) ⊗ SU (5); this is
exploited in model building, for instance [3,8], but with dif-
ferent assignments to colour and flavour. If we use this kind
of decomposition and we accept the irreps 5 and 10 instead of
the 15, it amounts to exchange some of the ±4/3 and ±2/3
charges by an excess of ±1/3 charges.

8 Discussion

The postulate It is turtles all the way down4 applied solely to
squarks already fixes the number of generations to be greater

4 I first heard this idiom in a talk from Alvaro de Rujula in 1986.

or equal than three. Adding a reasonable condition on the
building of neutral sleptons, it fixes uniquely N = 3 and
then also the separation between five light quarks and one
heavy one that does not participate in the composites. Of
course this uniqueness is not seen when going directly from
the SO(32) group down to flavour times colour, but even in
this case there is a separation between five “turtles” in the
fundamental of SO(32) and a non-participant “elephant”.

While eventually all the extant multiplets of the decom-
position should be explained, the (1, 3) squarks, of charge
±4/3, are specially puzzling. They can not be organised
as three generations of partners of four-component Dirac
quarks. Still, they have a role in the flavour multiplet, and they
could exhibit their singularity if chirality is introduced back
in the game. We have not considered other flipped descents
that could result in different extra squarks

The symmetry between quarks and diquarks or its hadronic
equivalent is known to be one of the historical origins
of supersymmetry [17,25] and it is used in hadronic phe-
nomenology. But a concrete hadronic construction of our
scalars as real diquarks produces the ones of odd parity, that
are excluded of phenomenological discussions as they do
not survive the ’single mode approximation’ [23]. Thus the
composite “squarks” and “sleptons” bound here should be
not the ones, diquarks and mesons, found at QCD scale, but
it is intriguing that they are similar in number and mass.

Approximate supersymmetry between quarks and diquarks,
to be used for dynamical supersymmetry between barions and
mesons, is a well known technique, see the review [5]. One
of the authors of this review extended this technique to pre-
ons [13], so that dipreons are susy partners of preons, but the
model does not produces a dynamical susy with new scalars
as partners of leptons and quarks.

We can justify the uplift from SU (15) to SO(32) by ask-
ing particle colour to be in a slightly greater group, such
as U (3). This could be a hint of the difference between the
binding mechanism needed here, that should happen at high
energy scale, and the usual binding of mesons and diquarks.
Observe that the usual binding shares some properties: the
top quark, our elephant, does not bind into mesons -because it
disintegrates before-, and the masses of mesons and diquarks
are in the same range of energies that the SM fermions, as
expected of a slightly broken supersymmetry.

While the composites point to HC, TC or ETC models, one
must recognise that the motivation for SO(32) is not only to
produce one hypercharge and the adequate multiplets in the
decomposition, but also because of its role in string theory.
The postulates of composition need a pairing that looks sim-
ilar to labels in terminated open strings. The composition
process from the point of view of a terminated “QCD string”
bears some similarity to the techniques of [6] using “planar
orientifolds”.
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If we get the scalars from SO(32) a natural question is
where the superpartners -the actual fermions- are. They could
be obtained by applying the susy transformation. In string-
inspired GUTs, they should be in usual non-susy models
for three generations, and the issue would be to reassure the
compatibility with the SO(32) group. In preon constructions,
our focus on scalars, and thus in pairs of fermions, makes the
results to differ from most previous approaches [13,14,20].
To recover a fermion, one must consider an extra object,
particle or string, providing again an 1/2 spin.

9 Conclusions

In conclusion, lets review what we have got. We offer a
novel interpretation of the SO(32) group within the con-
text of supersymmetric models, emphasizing its potential as
a flavour group for scalars. The decomposition and hyper-
charge assignment that allows to recover three generations
has not been presented in the literature explicitly. This is for
the obvious reason that it recovers scalars, not fermions. But
on the other hand, to look for scalars avoids to address the
problem of the lack of chiral fermions.

Besides, we offer a composite explanation for scalars of
the SSM, that fixes the number of generations and limits the
possible groups that can be used to generate flavour with a
separate colour factor. In the list of possible groups, SO(32)

stands up.
Our postulate is, certainly, exotic: it suggests that while

SSM fermions could be elementary, the SSM scalars are com-
posites, with their preons being a subset of the observed SM
fermions. Far fetched as this postulate looks, it reproduces
the SO(32) decomposition and fixes the number of possible
generations. Also, it justifies the non observation of super-
partners; supersymmetry could be hiding in plain sight, not
broken but distorted.

We have recalled a classical mass formula that when
applied to our piece of SU (3) flavour symmetry can grant
pairs of scalars having the same mass.

The decomposition seems to imply that each generation
also includes two extra “scalar quarks” of charge ±4/3. It
is unclear if such scalars could have an associated fermion,
as it should be of Weyl type, not Dirac. On other hand, our
approach could be compared to the “scalar democracy” of
[22] that goes further and proposes the existence of a scalar
bound state for every pair of fundamental fermions, either
leptons or quarks.
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