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Renormalization in 1-D Quantum Mechanics:

contact interactions

Luis J BOYA, Alejandro RIVERO ∗†

DFTUZ 9413; November 1994

Abstract

We have commemorated the 20th anniversary of the Wilson-Kogut
review [14] by building a toy model of the W-K RG in one dimensional
Quantum Mechanics... With it, we show (well, sort of) that the RG flow
in the set of 1-dimensional finite range S matrices fullfilling S†−k = QSkQ
defines the known four parametric set of zero-range interactions.

1 Introduction

It is presented here a gadget model of the Wilson-Kogut [14] renormalization
group implemented in a Quantum Mechanical problem, a bit following the mood
of [7]. But our scheme is complex enough to be a good introduction before to
go to full QFT-oriented reviews, as the recent one from Ball-Thorpe [2].

Examples of the renormalization group in QM have been built using the
traditional beta function setup (by example, see [6]) and, recently, the path
integral formalism [12]. To get a non trivial W-K flow we work with QM on
R1. This one-dimensional setup is richer (and more complicated) than typical
”tridimensional” problems in R3/O(3), which are usually reduced to problems
in the one dimensional half line. By working with the full real line we are forced
to calculate in matrix form, which make the problem more illuminating in the
long way. This can be seen, by example, by comparing Newton [11] vs. Fadeev
[5] solutions of the 1-D inverse scattering problem.

Our scheme moves close to the standard studies of contact interactions: self-
adjoint extensions [1], series of hamiltonians [3], regularizations [10, 8] etc. So
it can illuminate some recent conflicts in the literature, such as the status of
the controversial δ′ interaction (which, btw, would be scale-invariant in one
dimension or at least to present characteristics close to the 1/x2 studies from
[7]).
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This preprint represents work in course. Rigorization of convergence issues
in the perturbative analisis is in process. Effort has been done to implement
major features of the renormalization group, but some interesting points, as
C-functions or correlation lengths are not implemented yet.

Plan of this paper is as follows: In section 1 we make some introductory
remarks and the plan of the paper is presented. Section 2 defines the inter-
action we are going to study and sketch some needed formulae. In section 3
the wilson-kogut RG is built and fixed points are calculated. Section 4 show
some examples of trajectories got directly from known solutions, for compara-
tion. Section 5 completes the topological analysis of the RG flow calculating
the stable and unstable directions at fixed points. Sections 6 and 7 sketch some
examples showing how the mechanics of of regularizated potentials and renor-
malized couplings. Both sections are mainly didactical and only needed points
are detailed. We conclude in section 8 with some specific remarks about contact
interactions.

2 The cut-off interaction
We can re-
lax this condition to
be only ”with range
less than a”

A localized interaction with cut-off a will correspond to an interaction which
is free out of the interval (−a, a), but can have any form in the interior of this
interval. So we work only with data external to (−a, a). Equivalently, it can be
said that the cutoff ”hides” or ”averages” any characteristic of the interaction
in distances lower than the cutoff, see figure 1.

We can characterize such interactions either by their scattering matrix,

Sk =

(
T r Rl

Rr T l

)
(1)

or by some matrix specifying the boundary conditions in −a, a. An useful one,

given its dimensional and scaling properties [3], is M ≡
(
α+ ρ −ρeiθ
−ρe−iθ β + ρ

)

(
−ψ′(−a)
ψ′(a)

)
= Ma

k

(
ψ(−a)
ψ(a)

)
(2)

Where the parameters in M are reals, but can become indeterminates or infinity
for some interactions. In such case, we could use other formulations [13, 9], closer
to the standard formalism of self adjoint extensions.

Note that, in principle -and forgetting some of inverse scattering theory-,
different hamiltonians could be localized in the same interval with equal con-
ditions at the boundary; thus the a-cutoff in some sense hides data about the
interaction to distance less than 2a.

The interaction being free out of this interval, the asymptotic solution of
the Schroedinger equation must remain valid over all this zone {R − (−a, a)}.
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Thus we can use the explicit definition of the S-Matrix to connect the boundary
conditions at both sides of the interval. As we will need it in our examples, lets
skectch the formulae. For each eigenvalue k, we can chose two independent
solutions u1, u2 of the Schroedinger eq. fulfilling:

u1(x) = eikxT l x > a (3)

eikx + e−ikxRl x < −a (4)

u2(x) = e−ikx + eikxRr x > a (5)

e−ikxT r x < −a (6)

and evaluate them at −a and a to solve for the matrix M a
k ; and reciprocally for

Sk. We get the following relationships.

Mk = −ik
(

1−e2iakRl+e2iakRr−e4iakRlRr+e4iakT lTr

1+e2iakRl+e2iakRr+e4iakRlRr−e4iakT lTr
2Tr

1+e2iakRl+e2iakRr+e4iakRlRr−e4iakT lTr

2T l

1+e2iakRl+e2iakRr+e4iakRlRr−e4iakT lTr
1+e2iakRl−e2iakRr−e4iakRlRr+e4iakT lTr

1+e2iakRl+e2iakRr+e4iakRlRr−e4iakT lTr

)

(7)

Sk = −e−2iak

(
2eiθikρ

αβ−iαk−iβk−k2+αρ+βρ−2ikρ
αβ−iαk+iβk+k2+αρ+βρ

αβ−iαk−iβk−k2+αρ+βρ−2ikρ
αβ+iαk−iβk+k2+αρ+βρ

αβ−iαk−iβk−k2+αρ+βρ−2ikρ
2e−iθikρ

αβ−iαk−iβk−k2+αρ+βρ−2ikρ

)

(8)
There are no problem going from one description to the other, as here the

only role of both Sk and Mk here is to select a pair of eigenfunctions. 1

To be fully ”Wilson-Kogut compliant” and draw the renormalization flow
in the space of fixed cut-off theories, it is need to work with the adimensional
matrices S̃k̃, M̃k̃:

Sk ≡ S̃ak Mk ≡
1

a
M̃ak (9)

In this form, the relationship becomes:

M̃k̃ = −ik̃




1−e2ik̃Rl+e2ik̃Rr−e4ik̃RlRr+e4ik̃T lTr

1+e2ik̃Rl+e2ik̃Rr+e4ik̃RlRr−e4ik̃T lTr
2Tr

1+e2ik̃Rl+e2ik̃Rr+e4ik̃RlRr−e4ik̃T lTr

2T l

1+e2ik̃Rl+e2ik̃Rr+e4ik̃RlRr−e4ik̃T lTr
1+e2ik̃Rl−e2ik̃Rr−e4ik̃RlRr+e4ik̃T lTr

1+e2ik̃Rl+e2ik̃Rr+e4ik̃RlRr−e4ik̃T lTr




(10)

S̃k̃ = −e−2ik̃

(
2eiθik̃ρ

αβ−iαk̃−iβk̃−k̃2+αρ+βρ−2ik̃ρ

αβ−iαk̃+iβk̃+k̃2+αρ+βρ

αβ−iαk̃−iβk̃−k̃2+αρ+βρ−2ik̃ρ

αβ+iαk̃−iβk̃+k̃2+αρ+βρ

αβ−iαk̃−iβk̃−k̃2+αρ+βρ−2ik̃ρ

2e−iθik̃ρ
αβ−iαk̃−iβk̃−k̃2+αρ+βρ−2ik̃ρ

)

(11)
where now the (k-dependent) matrix terms αβρθ refer to the adim matrix M̃k.

1BTW, We can check that making a→ 0 and requestingSk to be unitary and complete, the
set of admisible solutions coincide with the result got in [3] , as Sk unitary iff Mk hermitian,
and Hin = Hout = L2(R) would imply Mk=cte when a = 0.
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3 The RG transformation, a la Wilson Kogut.

Fixed Points

As usual, we take the space {S̃} of all the a0-cutoff interactions, in dimensionless
form. Each interaction can be given by a unitary S(k), which by standard
scattering theory (see e.g. [11]) will fulfill

S†−k = QSkQ (12)

where Q =

(
0 1
1 0

)
and † is the hermitian conjugate. We could in addition

restrict ourselves to interactions invariant under time reversal. In such case,
we would add the condition S−k = S?k , which implies T r = T l and the know
reciprocity theorem

Ŝk = QSkQ (13)

Now, we define that two theories are in the same line of the Renormalization
Group flow if there are a pair of scales {a, eta} such that when we apply them
to its respective theories, we get the same physics (see figure 2), ie the same
S-matrix in physical dimensions. Equivalently, S̃t

k̃
will be the result of applying

a RG transformation to S̃k̃ iff S̃ak = S̃taetk, this is,

S̃t
k̃

= T t[S̃k̃] = S̃e−tk̃ (14)

So the fixed points will be constant S̃ matrices. This is, the subset of U (2)
fulfilling property (12), namely:

{Iθ,φ ≡
(
eiθ cos φ − sinφ

sinφ e−iθ cosφ

)
} ∪ {±Q} (15)

If we want to study only T-invariant potentials, we must add condition (13),
and the set of fixed points reduces further to

{
(

cosφ − sinφ
sinφ cosφ

)
} ∪ {±Q} (16)

Where the continuous circle of fixed points can be interpreted corresponding to
Kurasov δ′ [9]. The rest of contact interactions is not scale-invariant, so we need
to study the flow near the fixed points to find them, as relevant parameters.

Note that there are aditional asumptions on the analytic properties of S,
but we dont need to impose them to determine the fixed points, so they will
be commented when needed in section 5. At this point, note simply that the
caracterization of space of interactions is supossed to be restricted to potentials
with range smaller that the cut-off.
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4 The RG flow, as seen from the QM solution

Before entering in perturbative theory, it is good to give an idea about what re-
sults we expect, to more easily follow the argument. There are a four-parametric
family of self-adjoint extensions to the free hamiltonian in R− {0}. In this sec-
tion we calculate some subfamilies of scattering matrices for known extensions
and show its form near a fixed point.

Following the standard theory([1, 13, 3]), lets take contact-interaction given
by the constant matrix at a cutoff 0.

M0
k =

(
α+ ρ −ρeiθ
−ρe−iθ β + ρ

)
= cte. (17)

Its scattering matrix is:

Sk = −
(

2eiθikρ
αβ−iαk−iβk−k2+αρ+βρ−2ikρ

αβ−iαk+iβk+k2+αρ+βρ
αβ−iαk−iβk−k2+αρ+βρ−2ikρ

αβ+iαk−iβk+k2+αρ+βρ
αβ−iαk−iβk−k2+αρ+βρ−2ikρ

2e−iθikρ
αβ−iαk−iβk−k2+αρ+βρ−2ikρ

)
(18)

which, using the lenght a to remove dimensions, corresponds to a line

S̃k̃,a = −




2eiθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )2+αρ+βρ−2i k̃aρ

αβ−iα k̃a+iβ k̃a+( k̃a )2+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )2+αρ+βρ−2i k̃aρ

αβ+iα k̃a−iβ k̃a+( k̃a )2+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )2+αρ+βρ−2i k̃aρ

2e−iθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )2+αρ+βρ−2i k̃aρ




(19)
of renormalized interactions. By construction, the RG transformation (??) can
be compensated by a change in the ”spacing” (or cutoff) a.

As explained in figure 3, we expect solution lines to be end-pointed by fixed
points. Specifically, we see that:

a) For ρ = 0;α, β finite, which correspond to two separate half-lines, the RG
flow goes from S̃k̃ = Q to S̃k̃ = −Q We get this result in general for any ρ, α, β
finite and different of zero.

b) For ρ infinite, α, β finite, which for θ = 0 is the traditional δ-interaction,
we get the flow going

from S̃k̃ =

(
eiθ 0
0 e−iθ

)
to S̃k̃ = −Q (20)

In particular, we see that the fixed point governing the δ is the Identity. /Identity/... but
would we say the
trivial fixed point?

c) For ρ finite but α = β = 0 (which when θ = 0 is the so-called (by [1, 3])
δ′-interaction) the flow travels along

S̃k̃ = Q→ S̃k̃ =

(
eiθ 0
0 e−iθ

)
(21)

So all the interactions of this kind are to be governed either by transparent
interactions or by the totally reflective one. These observations are summarized
in figure 4.
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It is instructive to look the interactions in the form S = S0 + ∆S near a
fixed point (around an endpoint, if we prefer to ignore RG terminology in this
section). We get for ”+Q”

∆Sa = S̃k̃,a −
(

0 1
1 0

)
= (22)

= −




2eiθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2
αβ−iα k̃a+αρ+βρ−i k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2
αβ−iβ k̃a+αρ+βρ−i k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2e−iθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ




for −Q:

∆Sa = S̃k̃,a −
(

0 −1
−1 0

)
= (23)

= −




2eiθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2
+iβ k̃a+( k̃a )

2
+i k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2
+iα k̃a+( k̃a )

2
+i k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2e−iθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ




and for each Iθ,0:

∆Sa = S̃k̃,a −
(
eiθ 0
0 e−iθ

)
= (24)

= −




αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

eiθ
αβ−iα k̃a+iβ k̃a+( k̃a )

2
+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

αβ+iα k̃a−iβ k̃a+( k̃a )
2
+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ

αβ−iα k̃a−iβ( k̃a )− k̃a
2
+αρ+βρ−2i k̃aρ

e−iθ




(Notar que ∆S tam-
bien va con determi-
nante uno)

With this, we can see outgoing and ingoing trajectories near a fixed point:
-Lines starting from +Q with ρ = 0

∆Sa = −




0 2
αβ−iα k̃a

αβ−iα k̃a−iβ k̃a−( k̃a )
2

2
αβ−iβ k̃a

αβ−iα k̃a−iβ k̃a−( k̃a )
2 0


 = −

(
0 2 α

α−i k̃a
2 β

β−i k̃a
0

)
=(25)

= −2

(
0 1

1− i
α
k̃
a

1

1− i
β
k̃
a

0

)
≈a<<1

(
0 −i2αa

k̃

−i2βa

k̃
0

)
(26)

-Starting from ”+Q” with α = β = 0

∆Sa = S̃k̃,a −
(

0 1
1 0

)
== −




2eiθiρ

− k̃a−2iρ
2 −iρ
− k̃a−2iρ

2 −iρ
− k̃a−2iρ

2e−iθiρ
− k̃a−2iρ


 = (27)

= −
(
−eiθ 1

1 −e−iθ
)

1

1− i
2ρ

k̃
a

≈ −i
(
−eiθ 1

1 −e−iθ
)

2ρa

k̃
(28)
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-From Iθ,0 with ρ→∞:

∆Sa = S̃k̃,a −
(
eiθ 0
0 e−iθ

)
= −

( +α+β

α+β−2i k̃a

+α+β

α+β−2i k̃a
+α+β

α+β−2i k̃a

+α+β

α+β−2i k̃a

)
= (29)

−
(

1 1
1 1

)
1

1− 2i
(α+β)

k̃
a

≈ −
(
i i
i i

)
2(α+ β)a

k̃
(30)

Now, for the incoming lines we define a
¯
≡ 1/a, so a

¯
<< 1 and we get:

-Lines incoming to Iθ, α = β = 0.

∆Sa
¯

= −




−a
¯
k̃

−a
¯
k̃−2iρ

+a
¯
k̃

−a
¯
k̃−2iρ

+a
¯
k̃

−a
¯
k̃−2iρ

−a
¯
k̃

−a
¯
k̃−2iρ


 = (31)

= −
(

1 −1
−1 1

)
1

1− 2ρ

ia
¯
k̃

≈ −
(
−i i
i −i

)
a
¯
k̃

2ρ
(32)

-Arriving to −Q: (a) with ρ = 0

∆Sa
¯

= −




0 2
+iβa

¯
k̃+a

¯
k̃

2

αβ−iαa
¯
k̃−iβa

¯
k̃−a

¯
k̃

2

2
+iαa

¯
k̃+a

¯
k̃

2

αβ−iαa
¯
k̃−iβa

¯
k̃−a

¯
k̃

2 0


 = (33)

= −


 0 2

+ia
¯
k̃

α−ia
¯
k̃

2 +ia
¯
k̃

β−ia
¯
k̃

0


 = −2




0 1
1− α

ia
¯
k̃

1

1− β

ia
¯
k̃

0


 (34)

≈ −
(

0 − 2
α i

− 2
β i 0

)
a
¯
k̃ (35)

and from lines type (b):

∆Sa
¯

== −




2eiθia
¯
k̃

α+β−2ia
¯
k̃

2
ia
¯
k̃

α+β−2ia
¯
k̃

2
ia
¯
k̃

α+β−2ia
¯
k̃

2e−iθia
¯
k̃

α+β−2ia
¯
k̃


 = (36)

= −
(
−eiθ −1
−1 −e−iθ

)
1

1− (α+β)

2ia
¯
k̃

≈ −i
(
eiθ 1
1 e−iθ

)
2

α+ β
a
¯
k̃ (37)

(Note that the approximations here are given in a non rigurous way, simply
to have a reference for the next section) ...or to give dimen-

sions to k̃It’s worth to note that the coupling constants appear clearly related to the
(dimensional) constant we used to remove dimensions of k. Compare e.g. with
[10, 6].
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5 Stability. Relevant et irrelevant directions
getting ourselves out
of the forest...Now, we need to develop a perturbation theory2 around the fixed point directly

in the S-matrix formalism. In some neighbourhood of the identity, where the
exponential map is one ot one, we can use the generators Li of the U (2) group,
and write the perturbed system as

S~a = S0e
~a(k)·~L (38)

with ~a(k) ∈ R4.For
∫
||~ak||dk small 3, we can put it as:

S~a − S0 ≈ ~a(k) · (S0
~L) (39)

The generators of U(2) are

L = {
(
−i 0
0 −i

)
,

(
0 i
i 0

)
,

(
0 1
−1 0

)
,

(
i 0
0 −i

)
} (40)

(remember that −iL = {I, σx, σy, σz} So, around +Q we get

S+Q
0 L = {

(
0 −i
−i 0

)
,

(
i 0
0 i

)
,

(
−1 0
0 1

)
,

(
0 −i
i 0

)
} (41)

And for the other fixed points we have

S−Q0 L = −S+Q
0 L, SI0,0L = L, S

Iθ,φ
0 L = ... (42)

As our space of interactions impose restrictions to the admisible Sk, we
get restrictions on ~a(k) depending on the fixed point. Imposing condition (12)
around I0 we get

a0(−k) = −a0(k) (43)

a1(−k) = −a1(k) (44)

a2(−k) = a2(k) (45)

a3(−k) = a3(k) (46)

Of course, the additional asumption (13) of reciprocity imposes a3(k) = 0.
Now, we put the RG transformation in differential form.

T δtSk = Se−δtk ≈ Sk + (OkSk)δt (47)

where

OkSk =
∂Se−tk
∂t

|t=0 = −S′(k)k (48)

2The model is simple enough to be exactly solved, but we consider more didactical to
remain close to wilson-kogut papers

3for simplicity, we are going to be a bit loose with this condition
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We are looking for vectors ~a(k) such that

T δtS~a(k) ≈ Sλ~a(k) (49)

which to first-order amounts to

S0 + ~a(k)S0~L − ~a′(k)S0~Lkδt ≈ S0 + λ~a(k)S0~L (50)

So we have an eigenvalue equation

− k~a′(k) ~S0Lδt = (λ − 1)~a(k) ~S0L (51)

which solves to

(λ − 1) = nδt (52)

~a(k) = k−n~a0 (53)

As an example, lets calculate the flow near I0 with some detail. It could
seem that the valid ~a(k) would be

{0, 0, 1, 0} marginal λ = 1 (54)

{0, 0, 0, 1} marginal (55)

{k, 0, 0, 0} irrelevant λ = 1− δt (56)

{0, k, 0, 0} irrelevant (57)

{1/k, 0, 0, 0} relevant λ = 1 + δt (58)

{0, 1/k, 0, 0} relevant (59)

Now, finite range condition when required in even potentials implies 4 for
the fase shifts at small k

even wave : tan δ0 ≈ 1/k (60)

odd wave : tan δ1 ≈ k (61)

So, this condition for our space of interactions rules out the combinations

{−k, k, 0, 0} (62)

{−1/k,−1/k, 0, 0} (63)

as well as higher orders in k, and let us with four directions,

{0, 0, 1, 0} marginal λ = 1 (64)

{0, 0, 0, 1} marginal λ = 1 (65)

{k, k, 0, 0} irrelevant λ < 1 (66)

{1/k,−1/k, 0, 0} relevant λ > 1 (67)
4Well, I dont know of any rigourous proof at this moment...
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which coincides with the known result, derived in the previous section. Here, the
marginal direction (64) can be asociated with the circle of kurasov’ δ ′ family; the
relevant one (67) is the usual δ, and the irrelevant parameter one (66) can be seen
as coming from the fixed point +Q, then producing the line corresponding to
Albeverio et al. so-called δ′ (which happens to be not scale-invariant). Finally,
lets note that direction (65) produces a family of scale invariant interactions
which haven’t time-reversal symmetry.

6 Regularizations and its flow

Given a series of cutoff interactions the RG mechanism, as explained in figure
3, let us to obtain. a renormalized interaction at a given scale a0,

Lets see, as first example, the series of effective pseudopotentials {Va} pro-
posed by Carreau [3]. Each Va is zero out of the interval (−a, a), and the M
matrix at {−a, a} always the same and independent of k. In such case, we get
a series {M̃a ≡ aM0} in the space of dimensionless cutoff interactions. The S̃
matrix is:

S̃k̃ = −e−2ik̃




2eiθi k̃aρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

αβ−iα k̃a+iβ k̃a+( k̃a )
2
+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

αβ+iα k̃a−iβ k̃a+( k̃a )
2
+αρ+βρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ

2e−iθi k̃a ρ

αβ−iα k̃a−iβ k̃a−( k̃a )
2
+αρ+βρ−2i k̃aρ




(68)
where now the parameters α, β, ρ, θ are the constants of the initial matrix M .

The limit a → 0 is S̃0 = −e−2ik̃S̃fp , where S̃fp one of the fixed points studied
in section 5. Obviously the RG transformation moves S0 towards Sfp ; so when
using the RG we will move near Sfp and the renormalized series will converge
to a renormalized interaction in the relevant line. To be concrete, we begin with
a cut-off a0, and for each a we recover the original scale by applying T log(a0/a),
thus getting:

(T S̃)k̃ = −e−2i ãka0




2eiθi k̃a0
ρ

αβ−iα k̃
a0
−iβ k̃

a0
− k̃
a0

2
+αρ+βρ−2i k̃a0

ρ

αβ−iα k̃
a0

+iβ k̃
a0

+ k̃
a0

2
+αρ+βρ

αβ−iα k̃
a0
−iβ k̃

a0
− k̃
a0

2
+αρ+βρ−2i k̃a0

ρ

αβ+iα k̃
a0
−iβ k̃

a0
+ k̃
a0

2
+αρ+βρ

αβ−iα k̃
a0
−iβ k̃

a0
− k̃
a0

2
+αρ+βρ−2i k̃a0

ρ

2e−iθi k̃a0
ρ

αβ−iα k̃
a0
−iβ k̃

a0
− k̃
a0

2
+αρ+βρ−2i k̃a0

ρ




(69)
and we see that in the limit a→ 0 we recover (19), as expected.

To go for a more complicated example, lets use the two-deltas regulator for
δ′ interaction (this would be as a core-shell regularization), V = g

2a
(δ(x+ a)−

δ(x− a))
the matching conditions are:

2ika

g
((A − 1)e−ika − (B − Rl)eika) = e−ika + Rleika = Ae−ika + Beika (70)

10



−2ika

g
(Be−ika − (A− T l)eika) = T leika = Be−ika +Aeika (71)

The scattering matrix is:

Sak =

(
1

1−( g
4ak )2(e4ika−1)

e−2ika (e4ika−1)(1− ig
4ak )

4ak
ig + ig

4ak (e4ika−1)
... ...

)
(72)

which goes to −Q as a→ 0.
In the adim space this stuff becomes:

i2k̃

g
((A − 1)e−ik̃ − (B −Rl)eik̃) = e−ik̃ + Rleik̃ = Ae−ik̃ + Beik̃ (73)

− i2k̃
g

(Be−ik̃ − (A− T l)eik̃) = T leik̃ = Be−ik̃ +Aeik̃

S̃a
k̃

=

(
1

1−( g
4k̃

)2(e4ik̃−1)

(e2ik̃−e−2ik̃)(1− ig
4k̃

)

4k̃
ig + ig

4k̃
(e4ik̃−1)

... ...

)
(74)

and the limits are:

S̃a→0
k̃

= S̃a
k̃

S̃a
k̃→0

=

(
0 −1
−1 0

)
(75)

This shows the qualitative diference between both formalisms. In (72) we
simply take the limit a → 0 expecting in to be well-behaved (as it happens in
this simple case). In the RG approach, we first got the limit point, and then we
look for the fixed point atracting it.

Here, any limiting procedure will carry us inexorably to the Dirichlet fixed
point (see Seba). If we want to get a non trivial result, we need to implementent
a dependence for the coupling constant. This can be seen a la Tarrach in the
implicit equations; if g(a) → 0 the eq (73) has a indetermination and we will
need go to g’(a).

7 Coupling constant renormalization

Lets continue with the previous example. We ask for a g(a) dependence giving
us a non trivial limit. The example is simple enough to directly read the answer
from (72). Regretly the RG mechanism in QM is too simple [7] and it is not
possible to get remarkable differences. Lets sketch the method anyway.

Equation (74) let us define a subset {S̃a(g)} of interactions in the space S.
We need to get series S̃a ≡ Sk/a(g(a)) such that the limit point a → 0 falls
in the atracttion point of a non trivial fixed point. Any g(a) going to zero as
a→ 0 makes the trick, falling directly in the fixed point I0,0. Furthermore, we

want the corresponding renormalized series T− log t(a)S̃a to have a non trivial
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limit. This is enforced in the usual manner, asking for no dependence of a in
the limit. This is get by putting

t(a) = αg2(a) (76)

and then

lim
a→0

T− log t(a)S̃a
k̃

(g(a)) =

(
1

1−( 1

αk̃
)

...
... ...

)
(77)

which is the S-matrix of the δ interaction. Of course, if we put t(a) = a/a0, as
given by the usual scaling, we get

g(a) =
1

a0α
a1/2 (78)

So we have got an alternate derivation of the known result of Seba [13]. there are difference
between LimkLima

and limalimk. If
both limits conmute,
would we fall into
the scale-invariant
interaction, the fixed
point?

8 Remarks

We can always get a known regularization of the δ or the δ ′ and look for the
renormalized interaction. It can be got partial but important information simply
taking the limit of the unrenormalized series and asking which fixed point is
reached when applying the RG to this limit interaction. By example, lets note
that even if the nonrenormalized interaction falls in the atraction domain of the
two half-lines fixed point, S̃ = +Q, it is unlikely to reach any interaction in the
renormalized line if the series happens to fall in the domain of S̃ = −Q.

In particular, if we want to reach a limit of the kind of Albeverio et al.
”δ′”, we will need series of interactions in the attraction domain of the I0,0,
and with its limit in the domain of +Q. Such properties seem to imply that
any regularization for this interaction would fullfill Sk→0 → I, which greatly
restricts the class of candidates.

This job has been supported in part with funds provided by CICYT (Spain).
The author must acknowledge grant AP9029093359.
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Figure 1: Any information about the interaction to distances shorter that the
cutoff is hidden ”under the cutoff”
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Figure 2: The renormalization group transformation joins theories with the
same physics but different cut-off

Figure 3: Renormalization group scheme
Line A contains a series of unrenormalized theories with decreasing cutoff. The
renormalization group transformations let us to map this to one series (line C)
of theories with the same cutoff, say a0. Such series has as limit a point in
the line B of renormalized interactions (T∞{S̃}). The flow corresponding to
renormalized interactions is limited by fixed points (endpoints of B), but any
other theory could be driven out of the space of interactions when integrated
back with the renormalization group transformation (case D).
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Figure 4: Expected topology of the RG flow (artist’s view)

The usual δ potential corresponds to the line from

(
1 0
0 1

)
to

(
0 −1
−1 0

)
. It

is unlikely to reach the ”δ′ line” (α = β = 0) by renormalizing interactions in

the domain of the

(
0 −1
−1 0

)
fixed point, so some regularizations will give us

renormalized interactions in the line of the δ. Note that this drawing is somehow
a projection of the ∞-dim space, and RG trajectories doesn’t cross in reality.
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