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Flashes of noncommutativity
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February 24, 2003

Abstract

Noncommutativity lays hidden in the proofs of classical dynamics. Modern

frameworks can be used to bring it to light: *-products, groupoids, q-deformed

calculus, etc.

Flash one.

Time ago, newborn Classical Mechanics simply described how the inertial law was
disturbed by the action of a force. One can consider two inertial trajectories from
x to y and then from y to z, where a change is applied in a point y.
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If we ask for equal-time segments, then areas A and A′ are equal too. In modern
language, we are showing that dynamics of a physical system is given by the rule

∆xi × ∆p = ∆xf × ∆p

By applying this principle to central forces Newton was able to introduce time
in geometry, mimicking Kepler second law. This is proposition 1 of Book I in the
Principia. Historians tell us that this proposition was rebuilt at least three times
while doing the built, and it was already present in the previous paper De Motu.

It is very troublesome to define evolution, or consistence within a trajectory,
by claiming the equality of two areas, and then asking both areas to go to zero.
Paraphrasing my colleague E. Forgy (from a different context), I believe the old
fathers could be asking themselves: Is mechanics just a series of 0 = 0 statements?

Two close remarks:
- It is known that path integral measure is concentrated in continuous every-

where, differentiable nowhere, trajectories. This shows how troublesome is to try to
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approach the classical path. By the way, Feynman path integral is about the limit
of an equal-time discretization of trajectory, just as Newton Proposition 1.

- Itô’s stochastic calculus includes a factor
√

t. It should be interesting, from
the point of view of didactics, to look for the geometrical origin of this root.

Flash two.

Consider the natural ”elementary school” groupoid over configuration space:

(x y u) ◦ (y z v) = (x z u + v)

Its algebra of functions has the product

(AB)(x, z, t) =

∫ ∫
A(x, y, r)B(y, z, t − r)dydr

Fourier transforming the t component we see this product is equivalent to:

(ÃB̃)(x, y, t̂) =

∫
Ã(x, y, t̂)B̃(y, z, t̂)dy

which in turn, by changing ε ∼ 1/t̂, corresponds to the product defined in the
ε 6= 0 part of Connes’s Tangent Groupoid. Thus the algebra of functions in the
latter is a subalgebra of the one of the ”elementary school” groupoid.

The ε = 0 part of the Tangent Groupoid is defined using the product (x, X) ◦
(x, Y ) = (x, X + Y ) of elements of the Tangent Bundle. It is well known that
continuity of functions in all the groupoid is just a (de)quantization condition, as
ε > 0 defines a product of operators in Hilbert Space.

By Fourier transform we can see that Groupoid algebra in Tangent Space is
pointwise product of functions in Cotangent space. And if we choose a concrete
limiting procedure then we can associate a deformed, star product to the functions
of the Cotangent Space. Whose star-exponential, Fourier transformed again, can
be proved to be Feynman path integral.

Flash three.

While the law of areas can be used to prove angular momentum preservation, its
origin is deeper, and simpler, than our modern Noether’s theorem. It comes from
the combination of the law of addition of vectors and the first law of Newton, and in
this way it simply expresses the equality of the projection of velocities in the plane
orthogonal to the variation of momentum. Thus, force -or variation of momentum-,
which describes a plane, is compulsed to be a covector. And then we can look for
the potential functions whose gradient is the force.

The visualization of the plane associated to the force covector let us to extend
the equal-time area law to more arbitrary time steps: now we just ask for inertia
law in [the projection on] this plane. Noncommutativity is still there, hidden in the
definition of variation of momentum just as something with happens ”between” ve-
locity steps (whose size does not matter anymore). Lets say, when position changes
there is not such thing as a change of momentum, and when momentum changes
there is not such thing as a change of position.

It could be interesting to review the introduction of a gauge field. Then it is
known that the new momentum (as defined from the Lagrangian) is not anymore the
canonical conjugate of position. But the point is that the new field, at least in the
simplest U(1) case, generates a force orthogonal to the velocity. In some sense it is
exploiting a hole in the ”projected inertia law” of the previous paragraph. One could
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relate this exploit to the proof of Maxwell’s [homogeneous] laws from that famous
-and slippery- report of Feynman to Dyson. Remember that noncommutativity is
needed for the proof.

Remark.

If we were used to the derivation of the Lagrangian (and the Euler-Lagrange equations) in a de-
ductive way from Newton dynamics, as historically was done, then neither the groupoid formalism
nor Feynman path-integral approach should surprise us. It is very easy to attach a Lagrangian ac-
tion to an element of groupoid and then to formulate the variation mechanism. And the extremal
condition can be shown to be the one of the path integral. More on this below in the bibliography.

The real quest is the use of these formalisms for fields beyond 0+1.

Flash four.

During a quantization process it always happens that we choose an ordering of op-
erators. Above it was the limiting procedure. It is equivalent to select one concrete
star product. Also, it is known that it corresponds in the path integral formalism
to a choosing of what discretization method do we apply to the Lagrangian.

The classical limit of course, does not see the discretization nor the ordering.
Now, A huge -for the standards of the family- group of theorists like to study

the noncommutative differential calculus coming from the rule

f(x).dx = dx.f(x − λ),

that approaches the usual calculus when λ → 0.
The previous formula is a bit formal, and it is usually supplemented by choosing

whether the associated difference equations are to be considered with x ∈ Z or with
x ∈ R. In any case, there is still the same question that in the physical methods:
While keeping with the noncommutativity rule, it could be possible to do various
combinations of forward and backward derivations or to choose different values of
a displacement parameter such that λf ′(x) = f(λ + x + µ) − f(x + µ) with µ → 0
when λ → 0.

As other possibility, a doubly twisted differential calculus can be defined via

Dqrf(x) =
f(qx) − f(rx)

(q − r)x

and the standard technologies

Dqrx
n =< n > xn−1, < n >=

qn − rn

q − r
=

n−1∑
i=0

qn−iri, etc.

It is interesting because from the physics side no results are published, as far as
I known, beyond 0+1, so the q-geometry approach could contain some surprises. It
should be good to be aware that quantum mechanics does not need renormalization,
and renormalization is about scale-keeping in a limit process.

And even in the trivial case it can be studied an ”angle” q/m depending of the
position x but disappearing in the commutative limit.

Flashback.

It was not the first time Newton ran into troubles with the infinitesimal limit. Back
in 1666 he noticed how his binomial was the key for an algebraic approach to the
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method of calculation of tangents. The combination with Barrow theorem, giving
the inverse operation, was to be enough to dominate analysis during three centuries.
Probably Barrow got enthusiastic by the discovery, because Newton was asked to
write a small document, which was showed to Collins.

It seems that objections were raised about the method, and Newton was con-
vinced to bury it in the coffin of unspeakable resources. At that time Barrow
influence was high. He had narrowly escaped death two times while adventuring
in foreign lands, trying to rebuild the methods of Archimedes, and then returning
Cambridge to be awarded the (first) Lucasian chair. And Collins was also remark-
able, he was the key editor in the age, even if his own math was not so impressive.
So it is not surprising that Newton was refrained of speaking calculus, at least until
Leibnitz happened to claim the same results.

With time -and this is a sad history- Barrow’s star should decline, retired to
monastic studies far from math. He evolved to write Collins that their superiors
-in his Order- had completely ”forbidden” him to do study in any mathematical
research, and it is rumored he eventually overdoped opium until death. He was not
there, then, to discuss with Newton about the Principia.

The limit of Newton’s Proposition 1 was ultimately justified in empirical grounds:
it fitted the known dynamics of physical bodies. It should take centuries to verify
that the fit was wrong.
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