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Tunneling in asymmetric double well:

instanton calculus

Alejandro RIVERO ∗†

September 11, 2002

Abstract

The level splitting formula of an asymmetric double well potential
is calculated taking into account the multi-instanton contributions (di-
lute gas approximation). Results can be related with known semiclas-
sical ones obtained with a truncated hamiltonian, and the symmetric
case is easily recovered provided we consider the right limit.

ICP: 03.65, 02.30

Instanton calculations when applied in Quantum Mechanics result power-
ful methods to build semiclassical approximations, see e.g. the lecture from
Coleman [1]. Regretly, summation of all the multinstanton contributions in
a problem can be hard work, and there are only a few examples in the lit-
erature, mainly for highly symmetrical potentials [3]. When the symmetry
disappears, it is usually need a fully explicit path integral calculation, with no
shorter ways. This could explain the minimal implementation this technique
appears to have in more applied physics.

But focusing some less symmetrical potentials, simplified summation is
also possible, if we assume the series to be enough kindly comported. We
show here one possibility for the simplest asymmetric example, a double well
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with different values ω0, ω1, for V ′′ on the minima (see figure 1; think by ex-
ample on the sextic potential λx2(x− 2)4). Here the fluctuations around the
minima have different contributions, 1

2
ω1 > 1

2
ω0, so the n-instanton contribu-

tion can not be directly factorized as usually it is made, taking the integral
on zero modes apart.

Our method will rearrange the n-instanton integrals in such form that a
recursive definition can be given for all the family, then obtaining the sum-
mation from recurrence equations. Only the path between both minimum
is calculated, as this is enough to show the general strategy. A graphical
picture is suggested to follow more easily the discussion.

We are going first to calculate the contribution Mi of the multinstanton
composed of i + 1 instantons ω0 → ω1 and i antinstantons ω1 → ω0. Its
integral is:

Mi = N K2i+1A2i+1
∫ T

2

−T
2

dt1

∫ T
2

t1
dt2... (1)

...
∫ T

2

t2i

dt2i+1e
−

1

2
ω0(t1−(−T

2
))e−

1

2
ω1(t2−t1)e−

1

2
ω0(t3−t2)...e−

1

2
ω1( T

2
−t2i+1)

where as usual N is the normalization constant, K is the one-instanton con-
tribution, and A is the exponential of the classical action for one instanton.

Note that N and K are usually calculated (or pulled away) by relating
them to the harmonic oscillator solution. This is unimportant for our dis-
cussion and we are going to leave out N in the following. Note also that we
have taken equal contributions for instanton and antinstanton, as we have
put the relevant differences in the integral term.

The integrand in (1) being factorizable, we could try to solve the integral
going to complex variable, as it is indicated in any handbook (by example,
[2]) but no garantees are given. Now if we put B ≡ KA, t ≡ (t1 − t2)+ (t3 −
t4) + ... + t2i+1 we can see the integral in a more suitable form

Mi = B2i+1
∫ T/2

−T/2
dt1

∫ T/2

t1
dt2...

∫ T/2

t2i

dt2i+1e
ω0(T/2+t)eω1(t−T/2) (2)

in which we can rearrange limits and sum up some integrals (see again [2],
3.3.4), so it rest:

Mi = B2i+1e−
1

2

ω0+ω1
2

T
∫ T

2

−T
2

dt e
ω0−ω1

2
t (T/2 + t)i

i!

(T/2 − t)i

i!
(3)
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For the symmetrical well ω0−ω1

2
→ 0 and (3) is simply Euler’ Beta func-

tion, which evaluates to T 2i+1

2i+1!
, the expected zero-mode contribution. Of

course, (3) could be postulated on physical asumptions, (T/2+t) and (T/2−t)
being the time the instanton stays at each vacuum; but we found useful to
point out the derivation process.

Now, we choose not to evaluate this integral, and we make a simultaneous
study of integrals of the kind

I(n, m) = Bn+m+1e−
1

2

ω0+ω1
2

T
∫ T/2

−T/2
dt eδt (T/2 + t)n

n!

(T/2 − t)m

m!
(4)

Integrating by parts we can give the following recursive definition for all
the family:

I(0, 0) =
B

δ
[e

1

2
δT − e−

1

2
δT ] (5)

I(n, 0) =
B

δ
[e

1

2
δT (BT )n

n!
− I(n − 1, 0)] (6)

I(0, m) =
B

δ
[I(0, m − 1) − e−

1

2
δT (BT )m

m!
] (7)

I(n, m) =
B

δ
[I(n, m − 1) − I(n − 1, m)] (8)

which can be seen in a pictorial form by putting the integrals in a triangle
(figure 2), such that each integral is obtained by substracting the two above
it and putting an additional factor B/δ.

So, I(n, m) can be directly calculated by inspecting the triangle, counting
and weighting the number of paths from each term in the sides. The result
is:

I(n, m) = e−
1

2
ω0T

i=n
∑

i=0

(

m + n − i

m

)

(−1)n−i(
B

δ
)n+m−i+1 (BT )i

i!
+ (9)

+ e−
1

2
ω1T

j=m
∑

j=0

(

m + n − j

n

)

(−1)n+1(
B

δ
)n+m−j+1 (BT )j

j!

We could again be tempted, now of using (9) to sum all the multinstan-
ton contributions. But it results that we can avoid it by newly inspecting
the triangle and fixing our attention on sums of columns, which must, as
everything in these combinatorial triangles, own some interesting properties.
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Let S(n, m) be the sum of a column
∑

i=0 I(n+ i, m+ i), and let S±

j (n, m)

be the coefficient of S(n, m) associated to the term (BT )j

j!
e±δT/2. Grafically

(see figure 3) we find some relations between sums:

Si(n, m) =
B

δ
[Si(n, m − 1) − Si(n − 1, m)] (10)

S+
i (n, m) = S+

i+1(n + 1, m) (11)

n < i ⇒ S+
i (n, m) = S+

i (i, m + (i − n)) (12)

S+
i (i, m) =

B

δ
[S+

i (i, m − 1) − S
(
i i, m + 1)] = (13)

=
B

δ
[S+

i−1(i − 1, m − 1) − S
(
i+1i + 1, m + 1)]

In particular, this last rule (13), when applied to the central column, lets
us to formulate a recurrence equation for the coefficients a±

i ≡ S±

i (i, i) of the

series of powers in (BT )j

j!
. Symply put, we get:

a±

i+1 = a±

i−1 ∓
δ

B
a±

i (14)

which corresponds to the series produced by a lineal combination of two
exponentials C+eα+ + C−eα

−.
Let us to make it explicitly for the S+ terms. In this case the coefficients

in the exponentials are:

α± = −
δ

2B
±
√

(
δ

2B
)2 + 1 (15)

and it rests to fix C+, C−; we can made it from the two first terms of the
serie, which obviusly fulfill:

a0 = C+ + C− (16)

a1 = −(C+ + C−)
δ

2B
+ (C+ − C−)

√

(
δ

2B
)2 + 1 (17)

So, we finally need to sum two series,

a0 =
∑

i=0

(

2i

i

)

(−1)i
(

B

δ

)2i+1

=
B

δ

∑

i=0

1

2
..
2i − 1

2
(−1)i (2B/δ)2i

i!
(18)

a1 =
∑

i=0

(

2i − 1

i − 1

)

(−1)i−1
(

B

δ

)2i

=
∑

i=1

1

2
..
2i − 1

2
(−1)i−122i−1 (2B/δ)2i

i!
(19)
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but we can acomplish it by simply browsing across any handbook and re-
membering the expansion of (1 + x)−1/2, and we obtain:

a0 =
1

2
√

1 + ( δ
2B

)2
(20)

a1 =
1

2
−

1

2
√

1 + (2B
δ

)2
(21)

And from here we get C− = 0 and C+ = 1

2
√

1+( δ
2B

)2
.

Now, for the S− part we see, by symmetry of the triangle, that the calculus
is similar, and we get the same coefficients C+, C−, but interchanged and
with a sign changed.

The final result is, thus,

∑

i=0

Mi =
1

2
√

1 + ( δ
2B

)2
[e−E+T − e−E

−
T ] (22)

with

E± =
ω0 + ω1

4
∓
√

δ2

4
+ B2 (23)

And expanding, we have that the gap between the first two levels is:

∆ =

√

(ω1 − ω0)2

4
+ 4K2e−2Sinst (24)

As a consistency check, we observe that when we go back to the sym-
metrical case, δ → 0, equation (23) gives us the well known formula for the
energy splitting. And of course, when the instanton contribution is negligible,
B → 0, we get two separated wells with same energy levels.

We can compare this result with the ”ancient” semiclassical method,
merely diagonalization of the truncated hamiltonian matrix

H =

(

ω0/2 B′

B′ ω1/2

)

(25)

and we obtain again (23), only replacing B by B ′. Then also in the asymmet-
rical case we can use the instanton method to estimate the barrier penetration
factor B′.
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The method can be complicated in two directions: we can add more
minima with different curvature, which force us to leave off the plain-triangle
and obscures the method; or we can use it to treat potentials with more
minima but only two curvatures, as by example the polynomical x6 triple
well, which add some instantons more to calculate, but doesn’t add other
different summations.

Finally, note that this operation method implies some rearrangements
of power series, some care of the convergency conditions must be put when
working on a more general case. Apart from this, a strong asymmetry can
force the breakdown described by Jona Lasinio et al., see [5],[4].
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